

OVERVIEW OF SUPERCRITICAL CO₂ POWER CYCLE DEVELOPMENT AT SANDIA NATIONAL LABORATORIES

Steven A. Wright*, Thomas M. Conboy, and Gary E. Rochau

2011 University Turbine Systems Research Workshop

October 25-27, 2011 Columbus, Ohio

Sandia National Laboratories Advanced Nuclear Technology 505 845-3014, sawrigh@sandia.gov

505 845-3143, tmconbo@sandia.gov

505 845-7543, gerocha@sandia.gov

Goals of Presentation

- What is a Supercritical CO₂ Brayton Cycle?
- Benefits of S-CO₂ Power Systems
 - Economic and Environmental
 - All Heat Sources
- DOE-NE Gen-IV S-CO₂ Research Program
- Applications List (Fossil, Solar, Nuclear)
- Scaling Study Results (10 MWe)
 - 10 MWe Development and Demonstration Program Status of Development Effort
 - Commercial and Government
- Summary and Conclusions

What is a Supercritical CO₂ Brayton Cycle? How does it work?

Liquid like Densities with CO₂
Very Small Systems,
High Efficiency due to Low Pumping Power

High Efficiency at Lower Temp (Due to Non-Ideal Gas Props)

Rejects Heat
Above Critical Point
High Efficiency Non-Ideal Gas
Sufficiently High for Dry Cooling

Critical Point 88 F / 31 C 1070 psia / 7.3 MPa

High Density Means Very Small Power Conversion System Non-Ideal Gas Means Higher Efficiency at Moderate Temperature

Supercritical CO₂ Cycle Applicable to Most Thermal Heat Sources

Energy
Storage &
Heat
Transport &
CCHE

ean Coal & Natural Gas

Power Systems

cooling

Reactor containment building

Key Features to a Supercritical Brayton Cycle

- Peak Turbine Inlet Temp is well matched to a Variety of Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)
- Efficient ~43% 50% for 10 300 MW_a Systems

1000 F (810 K) ~ 538 C Efficiency = 43 %

1292 F (1565 K) ~ 700 C Efficiency =50%

- Advanced Systems (Increase Eff 5-8% points) & Dry
- Standard Materials (Stainless Steels and Inconels)
- **High Power Density for Conversion System**
 - ~30 X smaller than Steam or 6 X for Helium or Air
 - **Transportability (Unique or Enabling Capability)**
 - HX's Use Advanced Printed Circuit Board Heat Exchanger (PCHE) Technology
- Modular Capability at ~10-20 MWe
 - Factory Manufacturable (10 MW ~ 2.5m x 8m)

Gen IV S-CO₂ **Brayton** Cycle

Turbine Building

Steam

S-CO₂

Good Efficiency at Low Operating Temps Standard Materials, Small Size, Simple, Modular & Transportable AFFORDABLE and FABRICABLE

Modular & Self Contained **Power Conversion Systems** ~ 1.5 m x 8 m

Advanced **Heat Exchangers** Meggit / Heatric Co.

Heat Source Operating Temperature Range & SCO₂ Power Conversion Efficiency for Various Heat Sources

S-CO₂ Power Conversion Operating Temperatures are Applicable for All Heat Sources
Optimum Design Requires Different Approaches for Each Heat Source
Supercritical Fluid Technology has Untapped Growth Potential

DOE Supercritical CO₂ Program Description

- DOE Gen-IV S-CO₂ Research Program
 - Sandia has developed two S-CO₂ loops
 - Compression Loop (At Sandia) + Brayton Loop (At Barber-Nichols)
 - Testing Summary
 - Brayton and Compression Loop Descriptions
 - Compressor Performance Mapping
 - Power Generation in Simple Heated Brayton Cycle and in Split-Flow Re-compression Brayton Loop
 - Mixtures
 - Condensation Cycles / Rankine
 - Gas Foil Bearing Development
 - Thrust Bearing Heating
 - High Speed PM Motor Generator Controller Development
 - Sealing Technology
 - Modeling
 - Ability of Sandia S-CO₂ Brayton Loop to Reproduce Other Cycles
 - Summary and Conclusions

Key Technology

Turbo- Alternator Compressor Design
Permanent Magnet Generator with Gas Foil Bearings
~24" Long by 12" diameter

125 kWe at 75,000 rpm

Turbomachinery Wheels Designed and Manufactured By Barber-Nichols Inc.

Main Compressor

Re-Compressor

Turbine for Re-Compressor

Turbine for Main Compressor

OD=37.3 mm 1.47"

OD=57.9 mm 2.27"

OD=68.3 mm 2.69"

OD=68.1 mm 2.68"

S-CO₂ Development Sequence

Sandia Single Compressor Loop

GenIV-Supercritcal CO₂ Brayton Cycle Loop

Supercritical S-CO₂ Brayton Cycle DOE-Gen IV

Heater

Supercritical CO₂ Brayton Loop Final Design, Currently Existing, and Alternative Layouts

Power Generation in Upgraded S-CO2 Simple Heated Recuperated Brayton Loop

Measured T-S Diagram

GenIV_110714_0952

T-s Diagram

DOE SNL Test "GenIV_110714_0952"

At 5770 [s] into the test

Generated Power = 15716 [W]

Loss Measurements

C-2 Compressor T-2 Turbine

Fraction of Turbine Power Used or Lost

S-CO₂ Power Cycle Economic and Environmental Benefits

- DOE has invested 5 years and ~ \$10-11 M on Proof-of-Principle S-CO₂
 Power Systems
- The Potential Economic and Environmental Benefits of S-CO₂ Power Systems are Large
 - Useful with All Heat Sources
 - Dry Cooling, Oxy-Combustion with CCS and EOR, Smaller, Simpler, Improved Efficiency
- Development is Still Needed
 - To date only small scale proof-of-concept development loops are operating
 - Heat Source and Power Cycle are Linked (Cycle/Design Research)
 - Heat Exchanger Development is Needed
 - Micro-Channel Design Costs, Transient Cycling, Packaging, Failure Modes, Cost Reductions, Nuclear Certification
 - Commercial Engineering and Demonstration is Needed using Industrial Hardware (~10 MW_e)
 - Already started in industry
 - Government/Industry Partnership Role Makes Sense

Scaling Study

Scaling Rules and Ranges of Application for Key Brayton Cycle Turbomachinery Components

• 10 MWe allows use of Commercial Technologies

Approximate Shaft Speed and Turbine Wheel Diameter

Printed Circuit Heat Exchanger Scaling Rules

	Actual		Specific Costs		
Cost	kW	lb	lb/kW	\$/lb	\$/kW _{th}
60000	510	492	0.96	122	118
106000	1600	551	0.34	192	66
210000	2300	1410	0.61	149	91
Average			0.64	154	92

END NEM

HLGM TIVNBAAO 0001
009
009
27
1904 OVERALL HEIGHT

Gas Cooler Water/CO₂

LT Recup

Potential Applications

- Nuclear
 - (LWR, SFR, GCR, Molten Salt Reactors)
- Concentrated Solar Power (CSP) Towers + Troughs
- Military (Fixed Base and Marine)
- Fossil
 - Oxy-combustion with Pulverized Coal with CCS + EOR
- Solar Power Towers
- Integrated Bio-Fuel/SCO₂ Plant
- Military Applications (Fixed Base and Marine)
- Geo-Thermal
- Waste Heat Applications
 - Gas Turbine Bottoming Cycle
 - Supercritical Water Oxidation

Concentrated Solar Applications

Small or Big? 1-10 MWe or 100 MWe

or centralized s-CO2 power block with salt receivers?

Fossil Application Oxy-Coal Combustion

Nuclear Applications

Why is DOE-NE Interested?

- 1) Better efficiency than existing plants
- 2) Smaller Power Plants

(30% of Steam)

3) Simpler Power Plants

(1/10th number of valves)

4) May Eliminate the Intermediate Loop in Sodium Fast Reactors

S-CO₂ Power Cycles for Reactors

NGNP High Temperature Gas Cooled Reactor 850-900 C

S-CO₂ Refueling Reactor equipment maintenance and repair building. **GCRs** 800 C 850 C Electrical-technical He ~ 50 % Efficiency (S-CO₂ Brayton) 650C 600 C He 450C Reactor containment building **SFRs Sodium** ~ 43 % Efficiency (S-CO₂ Brayton) 525C

Sodium Cooled Reactor 500-550 C

LWRs Pressurized Water Reactor 330 C

Potential SMR Applications

LWRs

~ 40 % Efficiency (S-CO₂ Recup Rankine Condensing Brayton)

Sandia Research Program Summary

- Sandia/DOE have two operating S-CO₂ test loops
 - Research Compression Loop
 - Reconfigurable Brayton Loop
- Measured Main Compressor Flow Maps
 - Overall Good Agreement with Mean-Line Predictions of the Performance Maps
 - Over a wide range of operating Temperature, pressure, and density
- Using Brayton loop Configuration available in FY2010 and 2011
 - Heater power was limited to 260/390/520 kW
 - Produced Power in simple heated recuperated Brayton loops (Main TAC and Re-Comp TAC)
 - Power Production in recompression loops (still limit to break even)
 - Cold Startup, Breakeven, Power Production (6% efficiency and 20 kWe), Power/RPM Operation Maps
- Condensation in Tube and Shell and PCHE heat exchangers
 - Improved Efficiency, HX Development work is beginning
- Test (critical point) were performed with Mixtures of CO₂, CO₂-Neon, CO₂ SF₆,
 CO₂-Butane
 - Can Increase or decrease T_{crit}
 - Improved Efficiency (especially for low temperature applications)
- Thrust Gas Foil Bearing Tests and Modeling
 - Goal : higher thrust load capability and lower frictional power
- Natural Circulation
 - S-CO₂ Gas Fast Reactor
 - C3D CFD Model development
- Collaborations with Industry + Larger Scale System Development

Path Forward

- Path Forward
 - Continue Testing of Proof-of-Principle Small Loop
 - Work/Collaborate with Industry and other Agencies to develop S-CO₂ System for any heat source at the 10 MW_e sized system
 - Propose for First Nuclear Applications
 - Use with LWRs
 - Wet and Dry Cooling
 - 37% and 30% Efficiencies
 - Develop S-CO2 Systems for Nuclear Technology
- Begin Seeking Gov. Funded 10 MWe S-CO2 power system development to support FE, EERE, NE, Other
 - Useful for all heat sources (Nuclear, Solar, Fossil, Geothermal)
 - Numerous early non-nuclear Products (Marine, Fossil, Solar, Geo, Waste Heat, Heat Storage and Transport)
 - Improved the economic and environmental benefits for all systems (Smaller, Simpler, more Efficient, No Water Cooling)

S-CO₂: Potential

Potential for S-CO₂ Power Generation Systems to Improve Economics and Environmental Issues on a Large Scale

- 1) Dry Cooling
- 2) Oxy-Combustion, with CCS and EOR
- 3) Smaller and Simpler (than steam)
- 4) Improved Efficiency
- 5) Combined Heating, Cooling, and Power Cycles

Applicable For All Types of Heat Sources

